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Abstract: This article describes a novel approach to extract cortical morphological abnormality patterns
from structural magnetic resonance imaging (MRI) data to improve the prediction accuracy of Alzhei-
mer’s disease (AD) and its prodromal stage, i.e., mild cognitive impairment (MCI). Conventional
approaches extract cortical morphological information, such as regional mean cortical thickness and re-
gional cortical volumes, independently at different regions of interest (ROIs) without considering the
relationship between these regions. Our approach involves constructing a similarity map where every
element in the map represents the correlation of regional mean cortical thickness between a pair of
ROIs. We will demonstrate in this article that this correlative morphological information gives signifi-
cant improvement in classification performance when compared with ROI-based morphological infor-
mation. Classification performance is further improved by integrating the correlative information with
ROI-based information via multi-kernel support vector machines. This integrated framework achieves
an accuracy of 92.35% for AD classification with an area of 0.9744 under the receiver operating charac-
teristic (ROC) curve, and an accuracy of 83.75% for MCI classification with an area of 0.9233. In differ-
entiating MCI subjects who converted to AD within 36 months from non-converters, an accuracy of
75.05% with an area of 0.8426 under ROC curve was achieved, indicating excellent diagnostic power
and generalizability. The current work provides an alternative approach to extraction of high-order
cortical information from structural MRI data for prediction of neurodegenerative diseases such as AD.
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Key words: Alzheimer’s disease (AD); mild cognitive impairment (MCI); magnetic resonance imaging
(MRI); cortical thickness; multi-kernel support vector machine (SVM)

r r

Data used in preparation of this article were obtained from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) database
(available at: adni.loni.ucla.edu). As such, the investigators within
the ADNI contributed to the design and implementation of ADNI
and/or provided data but did not participate in analysis or writ-
ing of this report. A complete listing of ADNI investigators can be
found at: http://adni.loni.ucla.edu/wp-content/uploads/how_
to_apply/ADNI_Acknowledgement_List.pdf.

Contract grant sponsor: NIH; Contract grant numbers: EB006733,
EB008374, EB009634, MH088520.

*Correspondence to: Dinggang Shen, Department of Radiology
and BRIC, University of North Carolina at Chapel Hill, NC 27599.
E-mail: dgshen@med.unc.edu
Received for publication 17 January 2012; Revised 25 May 2012;
Accepted 2 June 2012

DOI: 10.1002/hbm.22156
Published online 28 August 2012 in Wiley Online Library
(wileyonlinelibrary.com).

VC 2012 Wiley Periodicals, Inc.



INTRODUCTION

Alzheimer’s disease (AD) is a progressive, irreversible
neurodegenerative disease characterized by the decline of
cognitive and memory functions, which are serious
enough to interfere daily life. This ultimately fatal brain
dementia causes certain types of nerve cells in particular
areas of the brain to degenerate and die for currently
unknown reasons. AD is the most common type of de-
mentia, which accounts for 50% to 80% of dementia cases.
Definitive diagnosis of AD can only be made with histo-
pathological confirmation of amyloid plaques and neurofi-
brillary tangles, usually at autopsy. It has been reported
that the incidence of AD doubles every 5 years after age of
65 [Bain et al., 2008] and 1 in every 85 persons will be
affected by the disease by year 2050 [Brookmeyer et al.,
2007]. The average life expectancy of AD patients varies
between 3 and 10 years, depending on the age they are
diagnosed with AD. The median life span is as long as 7
to 10 years for AD patients whose conditions are diag-
nosed when they are in their 60s and early 70s, to only
about 3 years or less for patients whose conditions are
diagnosed when they are in their 90s [Zanetti et al., 2009].

Mild cognitive impairment (MCI) is an intermediate
stage between the expected cognitive decline of normal
aging and the more pronounced decline of dementia. It
involves problems with memory, language, thinking, and
judgment that are greater than typical age-related changes.
These problems are severe enough to be noticeable to
other people and to show up on tests, but are not serious
enough to interfere with daily life. Since the problems do
not interfere daily life, the person does not meet the crite-
ria for being diagnosed with dementia. MCI increases the
risk of developing dementia, including AD, especially
when memory loss is the predominant symptom. This
type of MCI is commonly referred as ‘‘amnestic MCI.’’
Recent studies show that individuals with MCI tend to
progress to probable AD at a rate of approximately 10% to
15% per year [Grundman et al., 2004; Misra et al., 2009],
compared with healthy controls who develop dementia at
a rate of 1% to 2% per year [Bischkopf et al., 2002]. As life
expectancy increases, there is a pressing need for accurate
diagnosis of AD at its early stage to enable possible delay
of transition from MCI to AD via medications as well as
non-medication approaches.

The cerebral cortex is organized into a complex network
of local circuits and long-range fiber pathways such as vis-
ual network, language network, limbic system, and default
network. Interregional interactions between specialized en-
cephalic systems enable different cortical networks to func-
tion complementarily. Some studies suggested that
functional specialization can also lead to related anatomi-
cal variation, such as enlargement of hippocampus size
[Maguire et al., 2000, 2003], and enlargement of primary
motor and sensorimotor areas, premotor areas, anterior
superior parietal areas, and the inferior temporal gyrus
[Gaser and Schlaug, 2003a,b; Schlaug, 2001]. In addition, a

plethora of studies suggested that the anatomical and
functional brain structures experience significant altera-
tions because of pathological attacks, including AD. Specif-
ically, evidence derived from neuropathological,
electrophysiological, and neuroimaging studies suggested
that the decline of cognitive and memory functions in AD
patients was caused by the alterations in functional inte-
gration of distributed brain system or structural disconnec-
tion between regions due to white matter damage
[Delbeuck et al., 2003]. Neurophysiological and neuro-
imaging studies suggest that AD-associated abnormalities
involve not only the functional connection of several spe-
cific encephalic regions such as the prefrontal [Grady
et al., 2001, 2003; Horwitz et al., 1987], hippocampus
[Celone et al., 2006; Wang et al., 2006], cingulate [Greicius
et al., 2004], and visual regions [Bokde et al., 2006; Hor-
witz et al., 1995], but also the functional integration of the
entire brain network [Stam et al., 2006, 2007]. There is also
growing body of evidence suggesting that AD is associ-
ated with the disruption of white matter integrity in
regions such as corpus callosum, superior longitudinal fas-
ciculus, and cingulum [Medina et al., 2006; Rose et al.,
2000], supramarginal gyrus and putamen [Bozzali et al.,
2010], insula and rectue gyrus [Wee et al., 2011].

Many neuroimaging techniques have been applied for
AD and MCI detection, including structural magnetic reso-
nance imaging (MRI) [Fan et al., 2008; McEvoy et al.,
2009], diffusion tensor imaging (DTI) [Haller et al., 2010;
Wee et al., 2011], functional MRI (fMRI) [Machulda et al.,
2009; Pihlajamaki and Sperling, 2008; Wee et al., 2012a],
positron emission tomography (PET) [Grady et al., 2003;
Silveira et al., 2010], and the combination of DTI and rest-
ing-state fMRI [Wee et al., 2012b]. Recently, Jack et al.
[2010] reported that structural abnormalities can be
observed in the human brain before any clinical symptom,
indicating that structural abnormalities can be utilized for
early detection of AD. Most existing MCI and AD classifi-
cation frameworks that are based on morphometric data
essentially utilize one of the following features: hippocam-
pus features [Cuingnet et al., 2011; Gerardin et al., 2009; Li
et al., 2007; Wolf et al., 2001], tissue probability maps
[Kloppel et al., 2008; Magnin et al., 2008], and cortical
thickness data [Cuingnet et al., 2011; Desikan et al., 2009;
Querbes et al., 2009]. Cuingnet et al. [2011] constructed a
classifier by combining the cortical thickness values at all
vertices as a feature vector. In contrast, Desikan et al.
[2009] and Querbes et al. [2009] utilized the mean cortical
thickness values of neuroanatomically parcellated regions
as a feature vector.

Cortical thickness estimation performed in vivo via MRI
is an important technique for the diagnosis and under-
standing of the progression of neurodegenerative diseases,
such as AD. In this study, we chose to employ gray matter
cortical thickness (from the baseline scans) as morphologi-
cal features for AD prediction via a less explored para-
digm: is the correlation of morphological abnormalities
across different cortical areas surrogate markers of
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pathological attacks, such as those caused AD? We employ
correlative morphological information extracted from
structural MRI to provide a new family of features for AD
and MCI prediction. A similar idea of utilizing correlative
cortical thickness has also been introduced by Worsley
et al., albeit using an approach that is different from ours
(i.e., they used statistical parametric map (SPM) and singu-
lar value decomposition) [Worsley et al., 2005]. Further-
more, in their method the correlation between the two
vertices is computed across subjects. ROI-based morpho-
logical information, i.e., gray matter (GM) and white mat-
ter (WM) volumes, and regional mean cortical thickness, is
included in the proposed framework to provide extra in-
formation for better characterization of anatomical abnor-
malities associated with AD. Correlative and ROI-based
morphological features are integrated via a multi-kernel
support vector machine (SVM) to further improve predic-
tion capability.

The rest of the article is organized as follows: Method
and Materials furnishes information on the image dataset
and the postprocessing pipeline. This is followed by a
comprehensive description on how the correlative features
can be extracted from the mean cortical thickness of differ-
ent encephalic regions. Integration between correlative and
ROI-based morphological information using multi-kernel
SVM is briefly described. Performance of the proposed
prediction framework is validated extensively in Experi-
mental Results using the ADNI dataset. Findings and
methodological issues of the proposed framework are dis-
cussed extensively in Discussion. Conclusion provides
some concluding remarks.

METHOD AND MATERIALS

Materials

Data used in this study were obtained from the Alzhei-
mer’s Disease Neuroimaging Initiative (ADNI) database
(available at: adni.loni.ucla.edu). The ADNI was launched
in 2003 by the National Institute on Aging (NIA), the
National Institute of Biomedical Imaging and Bioengineer-
ing (NIBIB), the Food and Drug Administration (FDA),
private pharmaceutical companies, and nonprofit organi-
zations, as a $60 million, 5-year public–private partnership.
The primary goal of ADNI has been to test whether serial
MRI, PET, other biological markers, and clinical and neu-
ropsychological assessment can be combined to measure
the progression of MCI and early AD. Determination of
sensitive and specific markers of very early AD progres-
sion is intended to aid researchers and clinicians to de-
velop new treatments and monitor their effectiveness, as
well as lessen the time and cost of clinical trials. Readers
are referred to www.adni-info.org for more information.

The Principal Investigator of this initiative is Dr. Michael
W. Weiner, MD, VA Medical Center and University of
California, San Francisco. ADNI is the result of efforts of
many coinvestigators from a broad range of academic

institutions and private corporations, and subjects have
been recruited from over 50 sites across the U.S. and Can-
ada. The initial goal of ADNI was to recruit 800 adults,
ages 55 to 90, to participate in the research, approximately
200 cognitively normal older individuals to be followed
for 3 years, 400 people with MCI to be followed for 3
years, and 200 people with early AD to be followed for 2
years. The key eligibility criteria used in ADNI were
described at http://www.adni-info.org/Scientists/ADNI
Grant/ProtocolSummary.aspx. According to ADNI clinical
procedures, diagnosis of AD was made if the subject had
a mini-mental state examination (MMSE) [Folstein et al.,
1975] score between 24 and 26 (inclusive), a clinical de-
mentia rating (CDR) [Morris, 1993] of 0.5 or 1.0, and meets
NINCDS/ADRDA criteria [McKhann et al., 1984] for prob-
able AD. Individuals were categorized as amnestic MCI if
they had a MMSE score between 24 and 30 (inclusive), a
memory complaint, objective memory loss measured by
education adjusted scores on Wechsler Memory Scale Log-
ical Memory II [Wechsler, 1987], a CDR of 0.5, absence of
significant levels of impairment in other cognitive
domains, while essentially preserved activities of daily liv-
ing, and an absence of dementia. On the other hand, all
normal control individuals met the following criteria: a
MMSE score between 24 and 30 (inclusive), a CDR of 0,
nondepressed, non-MCI, and nondemented. The age range
of normal subjects will be roughly matched to that of MCI
and AD subjects with minimal enrollment under the age
of 70. The delayed recall performance in the Alzheimer’s
Disease Assessment Scale score (ADAS-Cog) 10-Word list
[Rosen et al., 1984] was selected from the cognitive meas-
ures included in the ADNI database because delayed
recall has been shown to be a strong predictor of AD
[Estevez-Gonzalez et al., 2003; Rountree et al., 2007].

Five hundred ninety-eight subjects who belong to one of
the AD, MCI, or normal control (NC) groups were ana-
lyzed in this study. These subjects were selected randomly
for a ratio of AD versus MCI versus NC roughly as 1:1:1.
All subjects received the baseline clinical/cognitive exami-
nations including 1.5T structural MRI scan, and were re-
evaluated at specified intervals (6 or 12 months). The base-
line scans were used as the input data in our experiments.
The follow-up examination results were used to separate
MCI subjects into two subcategories, stable MCI (sMCI)
and progressive MCI (pMCI). Subjects who converted to
AD within 36 months were classified as pMCI, and those
not converted to AD within the same period were classi-
fied as sMCI. Table I shows the demographic information
of the participants involved in this study. The conversion
from MCI to AD up to 36 months before clinical criteria of
AD are met is provided in Figure 1.

Overview of Methodology

An overview of the proposed AD/MCI classification
framework is summarized schematically in Figure 2.
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The proposed framework can essentially be divided into
two parts: training and testing. For training, two types of
features were extracted from the MR volume of every sub-
ject based on the Desikan–Killiany Cortical Atlas [Desikan
et al., 2006], which contains 68 gyral-based ROIs, 34 for
each hemisphere. The first feature type is the ROI-based
morphological features, which consist of the regional
mean cortical thickness values, and the cerebral cortical
GM, and the cortical associated WM volumes. The second
feature type is the correlative features, which are obtained
by the similarity of cortical thickness between pairs of
ROIs. The Desikan–Killiany Cortical Atlas and the names
of ROIs are provided in Figure 3.

To select the discriminative features that are helpful for
classification, a hybrid feature selection method was
applied separately to the correlative and ROI-based fea-
tures. Individual kernel matrices were then constructed
based on the selected optimal features of each feature type
before they were integrated to form a single mixed-kernel
matrix via multi-kernel SVM. The constructed mixed-ker-
nel matrix was finally employed to train a SVM classifier
via 10-fold cross-validation.

To classify a new test subject, we first extracted the ROI-
based features from the subject’s MR volumes. We then
constructed the correlative features from the regional
mean cortical thickness. Individual kernel matrices were
constructed for each feature type based on the optimal fea-
tures selected in the training process. These individual ker-
nel matrices were then integrated to form a mixed-kernel
matrix that will act as the input to the previously trained
SVM classifier to determine the class to which the new test
subject should belong.

ROI-Based Morphological Features

ROI-based morphological features, i.e., regional mean
cortical thickness, and cerebral cortical GM and cortical
associated WM volumes, were extracted in an automated
manner via FreeSurfer software suite (available at: http://

surfer.nmr.mgh.harvard.edu/, version 4.5.0). FreeSurfer is
a free, popular cortical surface analysis software that can
perform effective volumetric segmentation and cortical
surface reconstruction [Desikan et al., 2006; Fischl and
Dale, 2000; Fischl et al., 1999a,b, 2002]. Once the cortical
models were completed, a number of deformable proce-
dures were performed for further data processing and
analysis [Desikan et al., 2006; Fischl et al., 1999b, 2004].
Both intensity and continuity information from the entire
three-dimensional MR volume are used in segmentation
and deformation procedures to produce representations of
cortical thickness [Dale et al., 1999; Fischl et al., 1999a).
Procedures for the measurement of cortical thickness have
been thoroughly validated against histological analysis
[Rosas et al., 2002] and manual measurements [Kuperberg
et al., 2003; Salat et al., 2004], and demonstrated good test–
retest reliability across different scanners and field
strengths [Dickerson et al., 2008; Han et al., 2006]. Readers
are referred to Dickerson et al. [2008] for detailed explana-
tions regarding cortical surface reconstruction and cortical
thickness measurement.

TABLE I. Demographic information of the participants involved in this study

Variables

Diagnosis group

NC sMCI pMCI AD

No. subjects (n) 200 111 89 198
Gender

Male 103 83 60 103
Female 97 28 29 95

Age (mean � SD) 75.8 � 5.0 75.3 � 7.3 74.8 � 6.9 75.7 � 7.7
Education years (mean � SD) 15.9 � 2.9 15.9 � 3.2 15.9 � 3.0 14.7 � 3.1
Cognitive scores
ADAS-Cog (mean � SD) 6.1 � 3.0 10.3 � 5.0 12.6 � 3.7 17.3 � 8.0
MMSE (mean � SD) 28.6 � 3.8 25.9 � 6.1 26.7 � 1.6 21.8 � 6.1
CDR (mean � SD) 0 � 0.1 0.4 � 0.3 0.5 � 0.0 0.6 � 0.5

NC ¼ normal controls; sMCI ¼ static MCI; pMCI ¼ progressive MCI; AD ¼ Alzheimer’s disease.

Figure 1.

Conversion from MCI to AD up to 36 months in pMCI sub-

group. [Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]
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In addition to the regional mean cortical thickness,
standard deviation for cortical thickness of each ROI was
also computed during the construction of cortical models.

In this study, normalized regional mean cortical thickness
features were used in the proposed framework by divid-
ing the regional mean cortical thickness of each ROI with

Figure 3.

Desikan–Killiany Cortical Atlas used for brain space parcellation. The medial and lateral views of

the atlas are obtained from http://web.mit.edu/mwaskom/pyroi/freesurfer_ref.html. [Color figure

can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

Figure 2.

Schematic overview of the proposed AD/MCI classification framework.
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Figure 4.

Population average similarity maps for the NC, MCI, and AD groups. NC and MCI maps are simi-

lar, but they are both different from AD map. [Color figure can be viewed in the online issue,

which is available at wileyonlinelibrary.com.]

its respective standard deviation. To provide additional
morphological description, we also included the regional
cortical volumetric information into our proposed frame-
work. We utilized the same ROIs defined in the Desikan–
Killiany Cortical Atlas to extract the cerebral cortical GM
and cortical associated WM volumes. The intracranial vol-
ume (ICV) of every individual was also extracted. Since
ICV is unaltered by the disease, normalizing total or re-
gional volumes of each subject by their respective ICV
value provides better estimate of brain volume and makes
them more comparable [Whitwell et al., 2001]. Therefore,
we used the normalized GM and WM volumes of each
ROI in this study to provide a more appropriate volumet-
ric representation.

Correlative Morphological Features

It is well known that AD and similar dementias exhibit
subtle, spatially and temporally diffuse pathology, where
the brain is damaged as a large-scale, highly connected
network, rather than in one single isolated region [He
et al., 2008; Stam et al., 2007]. In view of this, we designed
an interregional description, which might be more sensi-
tive in conveying the pathological information for accurate
diagnosis of neurological diseases. In this study, we pro-
posed the application of correlative cortical thickness infor-
mation between pairs of ROIs for AD/MCI prediction.
Using the Desikan–Killiany Cortical Atlas, a (68 � 68) ma-
trix map was constructed with every element representing
the similarity of regional mean cortical thicknesses
between a pair of ROIs. The similarity map is symmetric
with ones along its diagonal.

Specifically, for the ith and jth regions, the dissimilarity
of the cortical thicknesses is defined as

dði; jÞ ¼ ½tðiÞ � tðjÞ�2 (1)

where t(i) and t(j) denote the regional mean cortical thick-
ness of regions ith and jth, respectively. The similarity
between regions ith and jth was computed as

sði; jÞ ¼ exp � dði; jÞ
2r2

� �
(2)

where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ri þ rj

p
with ri and rj denoting the standard

deviation of regional cortical thickness of regions ith and
jth. This new feature type measures the relative morpho-
logical abnormalities across different encephalic regions,
instead of morphological abnormalities in isolated regions
as in conventional methods. It is worth noting that the dis-
similarity measure [Eq. (1)] and the similarity measure [Eq.
(2)] can be replaced by other functions for similarity map
construction. Due to symmetry, only the upper (or lower)
triangular of the similarity map was used. For each subject,
all similarity values of the upper triangular part of the simi-
larity map were concatenated to form a long feature vector
with 2,278 elements (ðN � ðN � 1ÞÞ=2, with N ¼ 68).

The population average similarity map for NC, MCI, and
AD groups are shown in Figure 4. Significant topological
differences can be observed between the similarity map of
NC and AD groups, particularly in the central and bound-
ary regions of the maps as highlighted by black circles.
These regions correspond to ROIs such as bankssts, caudal
anterior cingulate cortex, caudal middle frontal gyrus,
cuneus cortex, entorhinal cortex, superior temporal sulcus,
supramarginal gyrus, frontal pole, temporal pole, trans-
verse temporal, and insula. However, topology structure of
similarity map between NC and MCI groups are similar
and only subtle variations can be observed. These observa-
tions are in line with the abnormalities caused by neuropa-
thology, i.e., AD patients experience more significant brain
atrophies when compared with NC and MCI groups while
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the brain atrophies in MCI individuals are subtle and are
very similar to NC. The population average similarity maps
for pMCI and sMCI subgroups are provided in Figure 5,
with no significant difference visually. Also, they are very
similar to the MCI and NC groups. Based on two-sample t-
test performed on every element in the similarity maps,
only 11.85% of the total elements show significant differen-
ces (P < 0.05) between pMCI and sMCI subgroups. This
value is much lower than other between-group compari-
sons, i.e., AD versus NC (64.14%), MCI versus NC (41.09%),
and AD versus MCI (48.07%). This might explain why the
classification of pMCI from sMCI is much more challenging
than other classification tasks.

Feature Selection

Solving pattern recognition or classification problems
with data of high dimensionality is a challenging task due
to the curse of dimensionality. This is particularly true for
neuroimaging classification problems. With the presence of
irrelevant or redundant features, learning models tend to
overfit and become less generalizable. Feature selection is a
useful and important means to identify relevant features for
dimensionality reduction and improving generalization
performance [Guyon and Elisseeff, 2003; Liu and Yu, 2005].
Due to high dimensionality of the correlative morphological
features, we utilized a hybrid feature selection method to
select the most relevant features for AD and MCI predic-
tion. Essentially, the feature selection algorithms used in
this study comprised two categories, i.e., filter-based and
wrapper-based approaches. Filter-based approaches rely on
the general characteristics of data to evaluate the features
without any learning algorithm, while wrapper-based
approaches normally involve a predefined learning algo-
rithm where its performance is used as evaluation criterion

for selecting a subset of most discriminative features. In our
hybrid approach, two filter-based approaches were initially
used to reduce the number of features, followed by a wrap-
per-based approach to further select a subset of features
that was favorable to AD and MCI prediction.

Specifically, in the first filter-based approach, only those
features with their P values is smaller than the predefined
threshold, measured via between-group t-test, will be
retained for subsequent feature selection. Despite the
reduction in dimensionality, the features retained by this
simple approach may still inevitably be intercorrelated.
Therefore, we employed another filter-based approach,
called minimum redundancy and maximum relevance
(mRMR) [Ding and Peng, 2005; Peng et al., 2005], to further
reduce the feature dimensionality. The mRMR model pro-
vides a balance between two aspects of feature selection,
i.e., efficiency and broadness. Efficiency ensures that char-
acteristics can be represented with a minimal number of
features without significant reduction in prediction per-
formance. Broadness ensures that the selected feature sub-
set can be the maximally representative of original space
covered by the entire dataset. In mRMR, mutual informa-
tion is used to measure the relevance of every feature pair
and between features and classes. Specifically, we minimize
the total relevance of feature pairs to achieve minimum re-
dundancy, while simultaneously maximize the total rele-
vance of feature-class pairs to achieve maximum relevance.

An effective wrapper-based model, called the support
vector machine recursive feature elimination (SVM-RFE)
[Guyon et al., 2004; Rakotomamonjy, 2003], was utilized to
further reduce the number of selected features. The selected
subset contains features that are most favorable to AD and
MCI prediction. The goal of SVM-RFE is to find a subset of
size l among d features (l < d) which optimizes the perform-
ance of the SVM classifier. The basic principle of SVM-RFE
is to ensure that the removal of a particular feature will

Figure 5.

Population average similarity maps for the pMCI and sMCI subgroups, which look similar to each

other. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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make the classification error smallest. In this study, we
employed SVM with linear kernel to evaluate the discrimi-
native power of the selected features. It is noteworthy that
the hybrid feature selection was performed separately on
each feature type (i.e., correlative and ROI-based features)
as shown in Figure 2. Finally, for each feature type we have
an individual optimal feature subset. Before performing fea-
ture selection on each feature type, the raw features were
first scaled individually to range [�1, þ1]. Then, every
scaled feature was normalized across all training subjects to
obtain its standard score (z-value). These steps ensured that
the regional mean cortical thickness and ICV normalized
volumetric measures were within the same scale, minimiz-
ing possible bias that may occur when performing selection
on features with different dynamic ranges.

Classification Using Multi-kernel SVM

A multiple-kernel learning framework was applied to
construct a set of descriptors from the previously selected
feature vectors for improving prediction performance. Spe-
cifically, we utilized a multi-kernel SVM with radial basis
function (RBF) kernel to integrate information from the
correlative and ROI-based morphological features. A ker-
nel matrix was first constructed for each feature type
based on RBF kernel before they were integrated using
multi-kernel SVM to form a mixed-kernel matrix with the
most appropriate weighting factors.

Specifically, given n training samples with
xi ¼ fxð1Þi ; :::; x

ðMÞ
i g denoting the feature vector of the ith

sample which contains M types of features and yi 2 f�1; 1g
the corresponding labels, the multi-kernel SVM of dual
form that integrates information from M feature types and
forms a mixed-kernel matrix can be given as

max
a

Xn

i¼1

ai �
1

2

X
i;j

aiajyiyj

XM
m¼1

bmkðmÞ x
ðmÞ
i ; x

ðmÞ
j

� �
(3)

s.t. kðmÞðxðmÞi ; x
ðmÞ
j Þ ¼ hUðx

ðmÞ
i Þ;Uðx

ðmÞ
j Þi;

Pn
i¼1 aiyi ¼ 0; with

0 � ai � C; i ¼ 1; :::; n where Uð�Þ denotes the kernel-
induced mapping function, kðmÞðxðmÞi ; x

ðmÞ
j Þ denotes the ker-

nel matrix for training samples x
ðmÞ
i and x

ðmÞ
j of the mth fea-

ture type, a denotes the Lagrange multiplier, h�; �i denotes
the inner product, bm � 0 denotes the weighting factor on
the m-th feature type, and C denotes the model parameter
that controls the amount of constraint violations. Given a
new test sample x ¼ {x(1), : : : , x(M)}, the decision function
for label prediction is

FðxÞ ¼ sign
Xn

i¼1

aiyi

XM
m¼1

bmkðmÞðxðmÞi ; xðmÞÞ
 !

(4)

The optimal SVM model, as well as an unbiased estima-
tion of the generalization performance of the complete

framework, was obtained via a nested cross-validation
scheme. Specifically, two nested cross-validation loops were
employed to accomplish these goals. The inner cross-valida-
tion loop was used to determine the hyperparameter of the
SVM models from a training set while the outer cross-vali-
dation loop was used to evaluate the generalizability of
SVM models using an independent validation set. This pro-
cedure was performed via a 10-fold cross-validation. SVM
model that performed the best during the nested cross-vali-
dation stage was considered the optimal model and its
hyperparameter will be used to classify new test subjects.

EXPERIMENTAL RESULTS

The discriminative power of the proposed integrated
and correlative morphological features were compared
with three ROI-based features, i.e., regional mean cortical
thickness, regional cortical volumes, and combined ROI-
based features. The combined ROI-based features were
constructed by concatenating all the regional mean cortical
thickness and regional cortical volumes into a long feature
vector. The performance of the multi-kernel SVM using
the integrated features was compared with the single ker-
nel SVMs using other feature types. For each comparison,
performance of every compared method was validated
through three different classification tasks: AD versus NC,
MCI versus NC, and AD versus MCI. The MCI dataset
used was the combination of all the pMCI and sMCI sub-
jects shown in Table I.

As the MCI subjects are well known for their heteroge-
neity, it is important to categorize MCI subjects into differ-
ent subgroups for better characterizing cognitive and
neural changes during disease progression. We performed
the validation based on two MCI subgroups, i.e., pMCI
and sMCI. In every experiment, we randomly partitioned
the data into two sets, one for training and one for testing,
with similar number of subjects from each class in each
set. The experiment was repeated 20 times to evaluate the
performance of all compared methods by determining
their mean classification accuracy, area under receiver
operating characteristic curve (ROC), sensitivity, and spec-
ificity. The average classification performance estimated
using this approach tends to be more conservative than
the traditional leave-one-out approach. It also ensures that
the trained SVM models are validated with independent
test sets for more precise estimation on how accurately
they will perform in practice. Details of each experiment
are described in the following subsections.

Comparison Between Integrated, Correlative,

and ROI-Based Features

In this experiment, performance of the proposed correla-
tive features was compared with the ROI-based features
(the regional mean cortical thickness, regional cortical vol-
umes, and hippocampus volumes). The mean classification
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accuracy, sensitivity, specificity, and area under ROC
curve (AUC) values of each compared feature type were
summarized in Table II. We also performed paired t-test
on the classification accuracy between the integrated fea-
tures and all other feature types, and the computed P val-
ues are provided in Table II.

It can be observed that the hippocampus volumes (left
and right volume) performed the worst among all com-
pared feature types in all classification tasks due to the
insufficient information conveyed by the hippocampus
volumes alone. The performance given by the regional
mean cortical thickness was also not satisfactory. How-
ever, when the correlative features were used, classifica-
tion performance improved significantly. The proposed
integrated morphological approach shows significantly
better performance than all other feature types in all statis-
tical measures used for comparison. The small P values
for classification accuracy indicate the superiority of the
integrated morphological features over the other feature
types. For difficult classification tasks such as MCI versus
NC and AD versus MCI, the proposed framework always
shows an area larger than 0.88 under the ROC curve
(AUC), indicating excellent diagnostic power. The pro-
posed approach always exhibits much better correct pre-
diction on patients as reflected by its significantly higher
sensitivity value.

Classification Between pMCI And sMCI

Separation of MCI individuals into subgroups, i.e., the
pMCI and sMCI, is crucial for possibly early treatment
and possibly delay of transition of the pMCI subjects to
AD. Hence, a good AD/MCI prediction framework must
be able to perform this task efficiently. We evaluated the
performance of our proposed framework based on the
categorized MCI subgroups provided in Table I. The pro-
posed framework was compared with all the methods in
the previous subsection and the results are summarized in
Table III. Note that the structural images used for discrimi-
nating the pMCI and sMCI subjects in this study are the
baseline scans.

It can be clearly observed that the proposed framework
using the integrated morphological information performs
the best in identifying MCI subjects who convert to clini-
cal AD within 36 months. The regional mean cortical
thickness performed the worst particularly for the sensi-
tivity and AUC values. However, significant improve-
ment can be observed when the correlative features were
used. The classification performance is significantly
improved by multi-kernel SVM-based integration of the
features.

To further evaluate the robustness of our proposed
method for prediction of pMCI subjects at different con-
version times, we performed the same classification proce-
dures for pMCI subjects who converted to clinical AD
within 36, 24, 18, and 12 months. In the experiments, we
used the same number of sMCI as the pMCI subjects at
each conversion time to minimize the effects of unbal-
anced data. The classification performance of pMCI sub-
jects at different conversion time is summarized in Table
IV. It can be observed that the proposed method performs
reasonably well for earlier conversion prediction. The clas-
sification accuracy is greater than 70.0% with AUC values
greater than 0.8 for all cases, indicating good generaliza-
tion performance. It is noteworthy that the sensitivity is
always larger than 0.70, while the specificity is around
0.70, indicating relatively robust and balanced classifica-
tion performance.

TABLE III. Categorized MCI subgroups classification

between all compared methods

Features

pMCI vs. sMCI

ACC P SEN SPE AUC

Thickness 68.30 <0.0001 0.5614 0.7786 0.7295
Volume 68.20 <0.0001 0.5943 0.7509 0.7629
Combined 71.45 0.0433 0.6011 0.8036 0.8106
Correlative 71.85 0.0041 0.6159 0.7991 0.8320
Integrated 75.05 — 0.6352 0.8441 0.8426

ACC ¼ ACCuracy; SEN ¼ SENsitivity; SPE ¼ SPEcificity.

TABLE II. Comparison between integrated, correlative, and ROI-based features

Features

AD vs. NC MCI vs. NC AD vs. MCI

ACC P SEN SPE AUC ACC P SEN SPE AUC ACC P SEN SPE AUC

Hippocampus 81.54 <0.0001 0.7692 0.8615 0.8868 72.78 <0.0001 0.6755 0.7800 0.7982 63.46 <0.0001 0.6566 0.6126 0.6871
Thickness 84.65 <0.0001 0.8278 0.8652 0.9175 74.87 <0.0001 0.7332 0.7640 0.8301 72.35 0.0006 0.7131 0.7335 0.8137
Volume 87.40 0.0002 0.8515 0.8965 0.9364 77.00 <0.0001 0.7463 0.7932 0.8528 74.29 0.0003 0.7177 0.7682 0.8265
Combined 89.70 0.0063 0.8758 0.9182 0.9489 79.23 0.0106 0.7630 0.8215 0.8806 74.72 0.0011 0.7364 0.7581 0.8217
Correlative 88.15 0.0002 0.8455 0.9173 0.9535 79.00 0.0001 0.7570 0.8230 0.8856 76.39 0.0230 0.7396 0.8182 0.8617
Integrated 92.35 — 0.9035 0.9431 0.9744 83.75 — 0.8355 0.8395 0.9233 79.24 — 0.7803 0.8046 0.8882

Thickness ¼ regional mean cortical thickness; hippocampus ¼ hippocampus volume; volume ¼ regional cortical volumes; combined ¼
combination of the regional mean cortical thickness and regional cortical volumes; integrated ¼ integration of the correlative and ROI-
based features; ACC ¼ ACCuracy; SEN ¼ SENsitivity; SPE ¼ SPEcificity.
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The Most Discriminative Regions

The discriminative regions that were selected from the
proposed classification framework for identifying the MCI
converters from nonconverters are reported in Table V.
The selected regions for other classification tasks are quite
similar and thus not reported due to space limit. The Table
V lists the top 20 selected ROI-based and correlative mor-
phological features.

It is found that the selected ROI-based features are from
both the regional mean cortical thickness and the regional
cortical volumes, indicating the existence of complemen-
tary information between these two morphological fea-
tures. It is also found that the selected features are from
both brain hemispheres and all four lobes, indicating the
spread of morphological abnormalities over whole brain.

Based on the selected features, the ROIs that contribute for
good classification performance in the pMCI classification
task include the middle temporal gyrus, entorhinal cortex,
superior and inferior parietal cortices, fusiform gyrus,
bankssts (banks of the superior temporal sulcus), supra-
marginal gyrus, precuneus cortex, parahippocampal, pos-
terior cingulate cortex, insula, medial orbitofrontal cortex,
and pars orbitalis (parts of inferior frontal gyrus).

Based on the selected correlative features, pairs of
regions that contribute for classification are not only
within the same hemisphere and same lobe but also across
different hemispheres and lobes. This indicates that the
morphological relation between different areas of the
brain, either adjacent or distant, might provide some
meaningful information for describing different stages of
neurodegenerative disease. Most of the regions that were
selected from the correlative features are similar to the
regions selected from the ROI-based features. The regions
that are selected by both feature types include the middle
temporal gyrus, entorhinal cortex, inferior parietal cortex,
fusiform gyrus, bankssts, precuneus cortex, insula, and
medial orbitofrontal cortex. Other regions that were only
selected from the correlative features include the precen-
tral and postcentral gyri, lateral occipital cortex, rostral
and caudal middle frontal gyri, caudal anterior cingulate
cortex, temporal pole, pars opercularis and pars triangula-
ris (the first and second gyri from the precentral gyrus),
isthmus of cingulate cortex, paracentral lobule, pericalcar-
ine cortex, lateral orbitofrontal cortex, cuneus cortex, and
superior frontal gyrus.

TABLE V. Top 20 most discriminative ROI-based and correlative morphological features that were selected during

multi-kernel SVM training in the pMCI vs. sMCI classification task

No. ROI-based features Freq Correlative features Freq

1 Entorhinal_R_G 15 Precentral_L–lateral occipital_R 7
2 Bankssts_L_T 12 Superior temporal_L–fusiform_R 6
3 Middle temporal_L_G 11 Rostral middle frontal_L–paracentral_R 5
4 Superior parietal_R_G 11 Caudal anterior cingulate_L–temporal pole_R 5
5 Inferior parietal_L_G 10 Lateral occipital_R–pars triangularis_R 4
6 Entorhinal_L_G 10 Caudal anterior cingulate_R–isthmus cingulate_R 4
7 Supramarginal_R_G 9 Inferior parietal_L–supramarginal_L 4
8 Precuneus_R_G 8 Pericalcarine_L–precuneus_R 4
9 Precuneus_L_G 7 Pars triangularis_R–rostral middle frontal_R 4

10 Inferior temporal_L_G 6 Paracentral_L–lateral occipital_R 4
11 Bankssts_L_G 6 Superior parietal_L–cuneus_R 4
12 Insula_L_G 5 Pericalcarine_L–entorhinal_R 4
13 Inferior temporal_L_T 5 Middle temporal_L–insula_R 4
14 Medial orbitofrontal_R_G 5 Bankssts_L–pars opercularis_R 4
15 Fusiform_R_G 5 Lateral orbitofrontal_L–lateral orbitofrontal_R 3
16 Posterior cingulate_R_T 5 Precentral_L–rostral middle frontal_L 3
17 Entorhinal_L_T 5 Caudal anterior cingulate_L–medial orbitofrontal_R 3
18 Parahippocampal_R_T 5 Superior temporal_L–postcentral_R 3
19 Pars orbitalis_L_G 5 Middle temporal_L–postcentral_R 3
20 Fusiform_R_T 5 Bankssts_R–Superior frontal_R 3

L ¼ left; R ¼ right; G ¼ gray matter; W ¼ white matter; T ¼ thickness; Freq ¼ frequency.

TABLE IV. Classification of pMCI subjects at different

conversion time

Conversion
time (mo)

pMCI vs. sMCI

ACC SEN SPE AUC

12 71.67 0.7028 0.7306 0.8036
18 70.18 0.7036 0.7000 0.8358
24 71.01 0.7135 0.7068 0.8184
36 71.76 0.7364 0.6989 0.8228

ACC ¼ ACCuracy; SEN ¼ SENsitivity; SPE ¼ SPEcificity.
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DISCUSSION

In the present study, we introduced a new approach of
feature extraction method that extracts correlative morpho-
logical information using the regional mean cortical thick-
ness. This information was used to effectively discriminate
the MCI and AD patients from normal controls, as well as
between the MCI and AD patients. The correlative features
give better classification performance than the ROI-based
features, such as regional mean cortical thickness and re-
gional volume, in all classification tasks when validated
using a large cohort of patients from the ADNI dataset.

To further improve the classification performance, we
integrated the correlative and ROI-based features via the
multi-kernel SVM. Promising classification results was
achieved using the integrated features: 92.35% (AUC ¼
0.9744), 83.75% (AUC ¼ 0.9233), and 79.24% (AUC ¼
0.8882) for AD classification, MCI classification, and AD-
MCI classification, respectively. High AUC value achieved
indicates excellent diagnostic power and generalizability
of the proposed framework to unseen dataset. In addition,
our framework substantially improves the classification
performance, particularly the sensitivity rate, compared
with ROI-based morphological feature-based classifiers.
These results indicate that the proposed framework can be
used to provide additional diagnostic information for early
treatment of the disease.

The identification of individuals in the transitional phase
is critical for testing disease-modifying therapies and for
the development of novel medications to prevent or delay
AD, particularly from a clinical and financial perspective,
since consistent and frequent follow-up of healthy individ-
uals that might or might not be at risk for AD is extremely
difficult, especially in a typical clinical setting. We applied
the integrated morphological feature-based SVM classifier
to a large number of MCI patients from the ADNI dataset.
Our findings demonstrate that the proposed framework
can detect subtle structural changes either at individual-
region level or across-region level that help to identify
those MCI individuals who converted to AD up to 36
months before clinical diagnosis. The predicted accuracy
of the conversion of MCI to AD within 36 months is
75.05% with a high AUC value of 0.8426. The classification
procedure employed in this study gives a conservative but
possibly more accurate estimate of the classification gener-
alizability. The classification between pMCI and sMCI sub-
groups at different conversion time demonstrated a
relatively robust and balanced performance of the pro-
posed framework by providing consistently classification
accuracy, AUC, sensitivity, and specificity values.

The brain regions that were selected for accurate detec-
tion of AD and MCI patients, as well as the conversion
from pMCI to AD have already been extensively reported
in previous studies, either in changes of volume or cortical
thickness. These included the precuneus cortex and insula
[Fan et al., 2008; Misra et al., 2009), orbitofrontal cortex,
precuneus cortex and insula [Misra et al., 2009], posterior

cingulate gyrus, precuneus cortex and insula [Davatzikos
et al., 2011], parahippocampal gyrus [Celone et al., 2006;
Machulda et al., 2009; Pihlajamaki and Sperling, 2008], in-
ferior temporal gyrus and precentral gyrus [Lenzi et al.,
2011], inferior temporal gyrus, inferior frontal gyrus and
insula [Han et al., 2010], entorhinal cortex [Devanand
et al., 2007; Du et al., 2001; Pennanen et al., 2004], middle
temporal gyrus [Risacher et al., 2009], entorhinal cortex
and supramarginal gyrus [Desikan et al., 2009], bankssts,
entorhinal cortex, fusiform gyrus, middle temporal gyrus,
parahippocampal gyrus, pars orbitalis, pars triangularis,
paracentral lobule, postcentral gyrus, rostral middle frontal
gyrus and superior parietal cortex [Wang et al., 2009],
entorhinal gyrus, parahippocampal gyrus, middle and in-
ferior temporal gyri, precuneus cortex, isthmus of cingu-
late cortex, posterior cingulate cortex, bankssts, medial
and lateral orbitofrontal cortices, rostral and caudal middle
gyri, superior frontal gyrus, precentral gyrus, fusiform
gyrus, superior and inferior parietal cortices, and supra-
marginal gyrus [Liu et al., 2011], precuneus and cuneus
cortices [Niskanen et al., 2011], temporal gyrus, inferior
and superior parietal gyri, and lateral occipital cortex [Liu
et al., in press]. The fact that our findings are consistent
with results reported in previous studies demonstrates the
efficacy of our proposed framework in identifying correct
biomarkers for classification purposes.

An interesting finding in present study is that the most
selected correlative feature in the sMCI and pMCI classifi-
cation task is between the left precentral gyrus and right
lateral occipital cortex as given in Table V. It is well
known that significant anomalies in the left precentral
gyrus and right lateral occipital cortex can only be
observed in the brain of AD patients, but not in its early
stage (MCI). However, the results provided in Table V are
for the classification task between sMCI and pMCI sub-
jects. As we know that pMCI subjects have higher tend-
ency of progression to AD, selection of some regions that
only experience significant alterations in AD (later stage),
but not in MCI (early stage), might favor the classification
between sMCI and pMCI. Furthermore, there is more than
40% of pMCI subjects used in the experiment have con-
verted to AD within a relatively short period of time (less
than 12 months). This might suggest that some of these
pMCI subjects already showed certain degree of anomalies
in regions with alterations that can only be observed in
AD patients, such as left precentral gyrus and right lateral
occipital cortex, as indicated by the present study.

Although the majority of the neuroimaging literature of
AD and MCI has focus on measuring morphological
abnormalities in individual ROIs, our study suggests that
the baseline cortical morphological abnormality patterns
between different ROIs across the whole brain can be uti-
lized to increase the prediction accuracy on an individual
basis. These correlative morphological abnormality pat-
terns are complex and include regions that are located ei-
ther adjacent or distant. The methodology presented
herein is built around this concept, that is, the
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morphological alterations caused by AD and MCI patho-
logical attacks are not restricted to certain brain areas, but
widely spread over the whole brain, and the relative
changes between pairs of ROIs might convey useful dis-
criminative information. The proposed approach is signifi-
cantly different from the ROI-based approach, which
examine the brain region-by-region independently, with-
out integrating the entire pattern of atrophy [Davatzikos
et al., 2005a,b] throughout all brain regions together. This
is very important, because although many regions gener-
ally display significant group differences, they might also
significantly overlap between groups [Fan et al., 2008], and
therefore do not provide sufficient sensitivity and specific-
ity for diagnostic purposes. The integration of ROI-based
and correlative morphological information provided the
best results, suggesting that the correlative features convey
additional and somewhat complementary information to
the ROI-based features. This fully multivariate approach
herein provides a more general and comprehensive way of
examining the data.

CONCLUSIONS

In this article, we proposed a new approach of extract-
ing morphological information from structural MRI
images. We constructed a regional cortical thickness simi-
larity map for each subject to describe the correlative
changes in cortical thicknesses between pairs of ROIs. We
demonstrated that this correlative information gives better
characterization of structural changes in MCI and AD
patients. By integrating the proposed correlated morpho-
logical features with the ROI-based morphological features
via multikernel SVM, significant improvement in classifica-
tion performance can be achieved. When applied to dis-
criminate pMCI subjects from sMCI subjects, our proposed
classification framework outperformed other methods by
providing higher values for all statistical measures used
for comparison. The promising results give supportive evi-
dence on the effectiveness of applying correlative cortical
information for diagnosis and prediction of progressive
neurodegenerative diseases, such as AD.
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